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Abstract

Varlous catlon exahan%ed montmnr1l]nmte~; J.it Na™ Raz+, Mg2+, (,‘.92+, Mn2+, (‘02+,
cu®, Agh, a2, He?*, AP, Pb>* and NH4") were prepared from calcium montmorillonite
and their propemes werc studlcd by means of X-ray diffraction and thermal analysis. The two
methods give information on the cation exchange in the interlayer space only. X-ray diffrac-
tion studies at room temperature arc mainly suitable for estimation of the exchange of calions
of different valencies. At 500°C, when the structure is completely collapsed, the d value of
montmorillonite depends on the non-hydrated ionic radius of the interlayer cation, but the
measurement interval i limited for fine interpretation. The thermoanalytical method is suit-
able for a better distinction of different exchangeable cations of higher hydration energy on the
basis of the DTG or DDTG curve,
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Introduction

The montmorillonite crystal lattice consists of two layers of silica tetrahedra
separated by one layer of alumina actahedra. Tn the tetrahedral layer, some sili-
con ions are replaced by aluminium tons, and in the octahedral layers aluminium
tons may be replaced in general by iron(II), iron(III) or magnesium ions. These
natural substitutions of silicon and aluminium resulit in a negative charge, which
is balanced by the presence of exchangeable cations, commonly divalent calcium
or monovalent sodium. For these reasons, montmorillonites from different loca-
tions demonstrate varying chemical and physical properties, and these differ-
ences are further compounded by the different types of mineral impurities that
may be present. An outstanding feature of the montmorillonite structure is that
water (and other polar molecules) can enter between the unit layers, causing the
lattice to expand in the ¢ direction.
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The presence of different ions as exchangeable cations greatly influences the
propertics of montmorillonite and especially the all-important swelling charac-
teristics {engineering geology). A knowledge of the properties of catton-ex-
changed montmorillonites is very important from the point of view of their in-
dustrial use and in studies of the contamination and decontamination of aqueous
and soil systems and the interfacial reactions between microelements, toxic ions,
soils and rocks (agriculture specific environmental studies, etc.). A great number
of papers have been published recently on the various artificially cation-ex-
changed montmorillonites (e.g. as catalysts in organic syntheses, etc.).

In present paper, various cation-exchanged montmoritlonites and their prop-
erties are studied, involving

e ions in macro-concentrations in rocks and soils: Ca™*, Mg™*, K" and Na”
f 2 2 2 2 3 .
e toxic elements: Cd™, Co™, Cu*", Pb*, Mn™, Hg™*, AU'" and (Li")
. . 2
e a radioactive waste end-product: Ba™*

Experimental

Two types of montmorillonite were applied as basic materials: One is calcium
bentonite from Buru, Romania, which X-ray diffraction studies show a mont-
morillonite content of about 60%. The other Ca-montmorillonite is a natural sub-
stance from Istenmezeje, Hungary, with a montmorillonite content of about
80%.

Preparation of various cation-exchanged montmorillonites

The fraction <2 pm was separated by sedimentation in water. Suspensions
were made of air-dried calcium montmorillonite in different metal nitrate or
chloride solutions with concentrations of from 0.01 to 1 mol dm™, in ratios of
from 1:5 to 1:50, or in different chloride solutions in concentrations from
1 mol dm™. The mixtures was stirred for several hours, and then centrifuged. The
supernatant was poured off, fresh electrolyte solution was added, and the mixture
was then stirred and centrifuged again. This procedure was repeated from 3 to
10 times. Finally, the solid product was washed with alcohol or water and dried
in air or in some cases at 105°C (Mn, Co, Ag and Pb). The conditions are detailed
in Table 1.

The quantities of exchanged metal ions in the montmorillonite were deter-
mined by an X-ray fluorescence method.

The structural modifications of the various cation-exchanged montmorillonites
were determined by means of X-ray diffraction, using a computer-controlled
Philips PW 1710 diffractometer with a Cu anticathode, operating at 30 mA and
40 kV and with a graphite monochromator. The scanning ratc was 2° 2@ min ™.

Thermal analysis was carried out with a Derivatograph-PC, a computer-con-
trolled simultancous TG, DTG DTA apparatus. This can display graphically the
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DDTG curve obtained by differentiating the primary thermogravimetric data.
The temperature of the furnace was regulated by a linear heating program at a
rate of 10°C min~'. The analytical conditions: air atmosphere, ceramic crucible,
mass of sample about 100 mg, reference material ALOs.

X-ray diffraction studies

X-ray diffractograms were made on non-oriented powder samples, oriented
samples, and oriented samples heated at 490°C for 4 h, respectively.
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Fig. 1 Ionic potential vs. d value of base rcflection for different cation-exchanged montmoril-
lonites, after literature data

About 80% of the exchangeable cations of montmorillonite are in the inter-
layer space. X-ray diffraction gives information on the cation exchange in the in-
terlayer space only, and not on adsorption on the surface. The extent to which the
clay mineral expands as a result of the adsorption of water into the interlayer
space is about 9.5 A along the ¢ axis. This expansion can be followed by X-ray
diffraction: mainly (001) base reflections were determined. The ¢ axis dimen-
sion of montmorillonite depends on the thickness of the water layers. The struc-
ture of the interlayer water is a resultant of various superimposed effects, one of
which is the nature of the exchangeable cations located in the interlayer space,
Exchangeable ions are mainly hydrated, due to the electrostatic forces between
the ion and the electric dipole of the water molecule, The size of the cation hydra-
tion zone and the number of water layers determining the size of the interlayer
space (the thickness of each layer is approximately 3 um) decrease with increas-
ing ionic size and increase with increasing ionic charge.

J. Therma! Anal., 53, 1998
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The literature data on different cation-exchanged montmorillonites ([1-9]
and present paper) (Fig. 1} reveal that the ionic potential and the d value show
some correlation, but there is not a strictly functional relationship hetween the
variables. The reasons for the scattering are as follows:

» The literature data on a given cation-exchanged montmorillonite differ.
Unfortunately, very important parameters, such as the experimental conditions,
the temperature, the relative humidity, or the degree of cation exchange, are fre-
quently not given in the literature. Data on the hydration of ions are highly con-
troversial [10]. The variation in the 4 value, depending on the relative humidity,
may be several A, and the ¢ spacing values can vary with electrolyte concentra-
tion and indicate partial cation exchange,

= There are water molecules in the interlayer space which do not belong di-
rectly to the cation hydration zone (the ordered water zone of the oxygen plane,
and the disordered water zone which separates the two ordered water zones).

= In sume cases, there is a gibbsite-like layer in the interlayer space, because
OH ions can coordinate around the cation (Al or Li),

® The d values of exchanged montmorillonites involving cations with differ-
ent valencies follow different theoretical rules (Fig. 2). For tri- or tetravalent cat-
ions, the trend is particularly marked. In the case of monovalent cations, the ionic
size is of great importance, while the water cosphere around these large ions is
very thin, The data relating to the middle line in Fig. 2 show that the bivalent cat-
ion-exchanged montmorillonites cannot be distinguished by X-ray diffraction
studies. Consequently, X-ray diffraction studies at room temperature are mainly
sutlable for study of the exchange of cations of different valencies.
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Fig. 3 Change in  valuc of base reflection for different cation-cxchanged montmorillonites
during hcating

During heating and partial dehydration, the size of the ¢ spacing decreases
step by step (Fig. 3). At 500°C, when the structure is completely collapsed, the d
value of the montmorillonite depends on the non-hydrated 1onic radius of the in-
terlayer cation, analogously as for mica minerals with different interlayer cat-
ions. Interpolation from data for Na, K, Ca, Ba and NH; mica minerals (Fig. 4)
suggests that 4 value range is 911 A. The interval is too limited for the identifi-
cation of cations with similar ionic radii. There are some cations (N1 and Li)
which can migrate from the initial interlayer position to the vacant octahedral
sheet (at about 250°C), thereby becoming unexchangable.
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Fig. 4 d value of base reflection for micas with different interlayer cations, atter data of
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Thermoanalytical studies

Thermeoanalytical studies furnish different possibilities for investigation of
the cations in the interlayer space. One is the measurement of the binding energy
of water molecules coordinated by the cations. The greater the hydration energy,
the higher the temperature of elimination of the water coordination to the cation.
The hydration energy is closely connected with the charge and radius of the cat-
ion: the greater the charge and the smaller the radius, the greater the hydration
energy (Fig. 5). The temperature of dehydration of the hydrated cation in °C is of
the same order as the hydration entropy (Table 2). It may therefore be supposed
that there is a greater possibility for the identification of different cations on the
basis of the thermal dehydration reaction,
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Fig. 5 lonic potential vs. hydration entropy after data of Bohn ef al. (1979)

The elimination of water coordinated to cations and that of other forms of
water in the interlayer space are distinguished in the DTA and DTG curves only
when the hydration energy of the cation is sufficiently great (Mg, Mn, Ca, Cu, Li,
etc.) (Figs 6 and 7). The thermal reaction at 242°C is probably due to the dehy-
droxylation of LiOH to be found in the interlayer space.

As attemnpt was made to separate the elimination of watcr coordinated to the
nterlayer cations with small hydration energy by means of the second derivative
(DDTG) of the low-temperature water elimination reation (Ba, Hg, Cd and Ag)
(Fig. 8a, b, ¢). The temperature differsnce between the DTG peak and the DDTG
minimum for these reactions is about 8°C.

In the case of monovalent ions (due to their large size and only small electric
charge), the hydration zone of the exchangcablc cation and the binding encrgy
are small, and this water therefore forms a unit with other water in the interlayer
space in the DTG and DDTG curves (Na, NH,, etc.) (Fig. 9a, b).

J. Thermal Anal., 53, 1958
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The results obtained from the measurements on Co and Pb-montmorillonite

cannot be interpreted so far.
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The temperature data measured in thermoanalysis depend considerably on
many parameters (e.g. heating rate, instrument type, sample holder and sample
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amount). For this reason, only data measured with the same instrument and under
the same conditions can be compared.
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